If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7t^2-7=7t
We move all terms to the left:
7t^2-7-(7t)=0
a = 7; b = -7; c = -7;
Δ = b2-4ac
Δ = -72-4·7·(-7)
Δ = 245
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{245}=\sqrt{49*5}=\sqrt{49}*\sqrt{5}=7\sqrt{5}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-7\sqrt{5}}{2*7}=\frac{7-7\sqrt{5}}{14} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+7\sqrt{5}}{2*7}=\frac{7+7\sqrt{5}}{14} $
| 5+7x=2x+30 | | -3(2u-2)+6u=-4(u+3) | | 11u-4u+2u-9u+u=16 | | 3x-2×(4x-1)=12 | | 5x-2(140-x)=350 | | 3x-2×(4x-1)=12= | | 32x=47x-1.21 | | -(2x+4)=8. | | -45-2y=-9 | | 2(x-5)+3=4x-11 | | -10-4x=18 | | 3x=5x−48 | | 5/49e=80 | | 69=3u=15 | | 4(3-5p)=(3p-4) | | 54-9y=18 | | y+1/2=-4/5 | | 2x+5.67=2.03 | | 1/3(9-2x=x+1 | | y+1/2=4/5 | | 12=14x/2 | | 6x+12=3x+22 | | 3/35e=48 | | 4y+2=2y^2+2y+8/y | | −5(−3x−3)+5x+4=-1 | | 2/3k=74 | | 20x+800=40x+600 | | E^(4x+1)=0 | | −5(−3x−3)+4=-1 | | (3-z)(5z+7)=0 | | 5-2v=21 | | 2x-2x+5x=10 |